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Expressions are obtained for the variances and relative uncertainties of the molecular refractivities in the 
case of orthorhombic crystals. It is deduced that when the ratios of the gram molecular refractivities are 
nearly equal to the corresponding ratios of the squares of the direction cosines of one of the molecular 
principal axes, the relative molecular refractivity uncertainties along the other two molecular principal 
axes will be relatively large. 

The problem of the errors in the susceptibilities of ortho- 
rhombic crystals has previously been studied by us (Lasheen 
& Tadros, 1968), and it was noticed that, in certain cases, 
slight experimental errors in the measurement of crystal 
magnetic anisotropies would lead to relatively large un- 
certainties in the calculated relative molecular susceptibili- 
ties. In the present work the effect of the experimental 
errors in the case of the molecular optical refractivities of 
the same type of crystals is studied. 

The experimental method usually applied for the deter- 
mination of the molecular refractivities starts with measure- 
ment of the principal refractive indices (n,, no, n~), and hence 
the corresponding gram molecular refractivities (R,, R~, R~) 
are deduced from the Lorentz-Lorenz equation, namely 

(n 2 - 1) M 
R =  (n---~+ 2----)-" D ' (1) 

where n is the principal refractive index along a certain 
axis, R the gram molecular refractivity along the same axis, 
M the molecular weight and D the density. Ignoring the 
slight effect due to the uncertainties in the values of M and 
D, an experimental error #n would result in an uncertainty 
~R in the calculated value of R given by 

6n M 
OR= ( n  2 _ F 2 )  2 " D " On. (2) 

The molecular refractivities (r~, rM, r~), where r~ is along 
the length of the molecule, rM along its breadth and r~ 
normal to its plane, may thus be deduced from the relation: 

where 

(rL) R. =1,8~ ,8~ ,8~I r~ 
R+ \r~ V+ r]]  rN 

~ =  Y L~; ~'-~-:~L ''~, ~]= Y L] 
2 2 ,8~= EM1; ,82=yM2; ,82= ~..M] 

y2 = EN2; ,2_ VN2. : 2 -  /-., 2, ~2 = E N  2, 

(3) 

(L1, 3//1, N~), (Z2, M2, N2) and (Z3, M3, Na) being the direction 
cosines of the molecular principal axes with respect to the 
crystal axes, the summation being taken over the inde- 
pendently oriented molecules in the unit cell• 

Thus 
D~ D 2  D 3  

rt. = -~- ; rM = -~- ; ru = A (4) 

where A is the direction cosine determinant given by 

while the determinants Da, D 2  and Da are respectively given 
by 

D,= Rb ,82 ,82 ; D2=I ,82 Rb ,13~ ; 
Ro ~,2 ~,~ ~,~ R~ ~,~ 

93 = ,82 ,82 Rb (5) 
y~ y~ R~ 

Substituting from (5) into (4) 

where 

1 
rL = -~- (alR, + blRb + ciRc) 

1 
rM = -A- (a2Ra -k b2Rb -t- c2Rc) 

1 
rN = A-  (aaRa d- baRb q- c3Rc) 

(6) 

- 2 2 2 2 ~2  ,2.  
a l  "-~ ,82~3 - -  bx = , r2 ,83  ; ~2 0 ~ 2 -  2)'3 

__/~2 ,2 ,2,02 2 2 2 2 .  
a 2  --/-P3,Vl - -  )'3/.71, b2 • = ~3 (~1  - -  (Z3~  1 , 

_ _ R 2  ,2 ,2R2.  2 2 2 ,2.  a3 - - / - . ' 1 ) ' 2 - / ' 1 / . . , ' 2 ,  ba = ~"I0~2 - -  ~1~ '2 ,  

2t~2 ~ 2  2 
C2 = ~ 3 P l  - -  Pa~ 

2~2  n 2  2 
C 3 = 0~xp 2 - -  P l Y 2  . 

Thus the uncertainties in the values of the molecular 
refractivities r~, rM and rN are given by 

1 / 
~(rL) = ~ -  [laxl5(R=) + Ibll6(Rb) + Ic~ I~(Rc)] 

1 
6(ru) = --~ [lad~(R°)+ Ib21#(Rb)+ Ic216(/%)] 

1 / 
fi(rN) = -~- [laala(R.)+ Ibal~(Rb)+ [c3[~(R~)] 

(7) 

while the relative uncertainties 6(rD/rL, O(rM)/rM and 
~(rN)/rN are given by 

a(r,J 1 
- [ladS(R.) + Ibd6(Rb) + Icxl~(R~)] rL DI 

~(rM) 1 
- -  - [la216(Ra) + Ib216(Rb) + Ic2l~(Rc)] 
rM D2 

6(rN) 1 
rN = D-3 [lazl6(R°) + Ib316(Rb) + Ic316(R~)]. 

(8) 
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If it happens that the ratios of the crystal gram mole- 
cular refractivities are nearly equal to the corresponding 
ratios of the mean squares of the direction cosines of one of 
the molecular principal axes, two of the relative molecular 
refractivity uncertainties, those along the two other mole- 
cular principal axes, will be relatively large, e.g. if 

ctl.fit ~'~, then, as seen from equation (5), the Ra:R~:Rc 2. 2. 
determinants D2 and D3 will be very small, and conse- 

quently, from equation (8), O(rM)/rM and 6(rN)/ru will have 
rather high values. 

Reference 

LASHEEN, M. A. & TADROS, S. (1968). Acta Cryst. A24, 
287-288. 

Aeta Cryst. (1975). A31, 391 

A new analytic approximation to atomic incoherent X-ray scattering intensities.  By VEDENE H. SMITH JR, AJIT 
J. THAKKAR a n d  DOUGLAS C. CHAPMAN, Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, 

Canada 

(Received 7 January 1975; accepted 9 January 1975) 

A new analytic approximation to atomic incoherent X-ray scattering intensities is proposed. Unlike other 
approximations in the literature, the present function has the correct asymptotic behaviour at both large 
and small values of s. Fits to the incoherent intensities calculated by Cromer are presented for all atoms 
from He through Am. 

Several analytic approximations to the intensity of the 
incoherent scattering of X-rays by N-electron atoms are 
available in the literature (Furukawa, Orton, Hamor & 
Williams, 1963; Rodriguez & Pings, 1965; Hajdu, 1971, 
1972; Palinkas, 1972). 

The more accurate approximations are those of Hajdu 
(1971, 1972) and of Palinkas (1972). Hajdu's function is 
given by 

I~n¢(S) = [ Z -  leoh(S)Z - 1] [1 -- m exp ( -- Ks) 
+ M exp ( -  Ls)] (1) 

where Z is the atomic number, s = 2 - t  sin 0, 0 is twice the 
scattering angle, 2rr/2 is the propagation constant of the 
X-ray, and 

I~oh(S) = IF(s)] 2 (2) 

is the intensity of the coherent scattering where the form 
factor, F(s), is approximated by 

4 
F(s)= ~ Al exp ( -Bls2)+  C.  (3) 

l=1 

Palinkas (1972) uses the following approximation 

l,n¢(S) = Z[1 - a(1 + bs)- c]. (4) 

Neither of the above functions has the correct asympto- 
tic behavior either for large or for small values of s. The 
small-s behaviour of the total scattered intensity is known to 
be (Benesch & Smith, 1973) 

/tot(//) ----- N 2 -/ /2 (r xez )/3 + O(//4) (5) 

where/ /= 4zrs, and the small-s behaviour of the form factor 
is known to be (Benesch & Smith, 1973) 

F(//) = N-/ /2(r2) /6  + 0(//4). (6) 

Hence the small-s behaviour of the incoherent scattering 
function is 

Ilne(S) = a2s z + a4 s4 + . . .  (7) 

where a2= 161r2(N(r2) - (r~2))/3. The large-s behaviour of 
the incoherent scattering function has been shown (Smith, 
1970) to be 

Itn¢(S) = N+ b4s - 4  q- b6 s - 6  q- . . . .  (8) 

In this work we propose a new analytic approximation 
to the incoherent scattering function: 

Ilnc(s)=N[1 - ( 1  +as2+bs 4) (1 +cs2+ds4)-2]. (9) 

Of course, for neutral atoms N =  Z. As can be easily verified, 
equation (9) has the correct asymptotic behaviour for both 
large and small values of s. 

Non-linear least-squares fits, over the range 0_<s_< 8.0, 
of equation (9) to the line(s) values calculated by Cromer 
& Mann (1967) and Cromer (1969) have been carried out 
with the algorithm of Fletcher (1971). Table 1 lists values of 
the parameters a,b,c, and d for all the atoms from He 
through Am. A measure of the 'goodness-of-fit', e, is also 
listed in Table 1 for each atom. It is defined by 

k 
e= 100[ ~ JZ/fk- 1)]'n/N (10) 

1=1 

where 6t are the deviations, e can be considered to be a 
standard percent deviation because N =  lim linc(s). Table 1 

$---~-oO 
shows that e does not exceed ,,, 2 % for any of the atoms 
except Li. It should be noted that global optimization is 
currently impossible (Powell, 1970) and hence the param- 
eters listed in Table 1 cannot be considered as defining 
anything better than a local minimum. Table 2 shows the 
typical quality of the fits for atoms of low (Z=  7), medium 
(Z=  46), and high (Z=  88) atomic numbers. 

A perusal of Table 1 shows that the fits worsen with 
increasing atomic number. For atoms of low and medium 
atomic number the overall quality of the fits obtained is 
comparable to the fits of Hajdu (1972) and Palinkas (1972). 
For atoms of high atomic number the fits are somewhat 
inferior to those of Palinkas (1972). However equation (9) 


